Studies in Mass Spectrometry. I. Mass Spectra of Substituted Naphthoquinones

J. H. Bowie, D. W. Cameron, and D. H. Williams

Contribution from the University Chemical Laboratory, Cambridge University, Cambridge, England. Received May 28, 1965

The mass spectra of 21 substituted naphthoquinones are reported and discussed. The characteristic fragmentation and rearrangement processes, substantiated in most cases by appropriate metastable peaks and/or deuterium labeling, greatly facilitate the location of substituents in the bicyclic system.

Naphthoquinone (I) breaks down in a well-defined manner upon electron impact,¹ and plausible struc-

^a Transitions indicated by an asterisk are supported by the presence of an appropriate metastable peak.

(1) J. H. Beynon and A. E. Williams, Appl. Spectry., 14, 156 (1960).

tures can be assigned to the most abundant fragment ions (see Scheme I and also Table I). The mass spectra of 21 substituted naphthoquinones (II-XXII), reported by us in this paper, indicate that the essential features of the breakdown of I are preserved in the spectra of the substituted derivatives. Details of the spectra are summarized in Figures 1 and 2 and Table I; in the table all ions having an abundance greater than 5% of that of the base peak (arbitrarily taken as 100%) are recorded.

The mass spectra of 2-methylnaphthoquinone (II) and 2,3-dimethylnaphthoquinone (III) are much as expected. In the case of the 2-methyl derivative (II), the loss of a methyl radical is more pronounced from the M – CO fragment (e, m/e 144) than from the molecular ion, and may be represented by $e \rightarrow d' (m/e)$ 129).² Most important, the presence of the abundant m/e 104 ion (b), and its decomposition products m/e76 (d) and m/e 50, substantiates the location of the methyl group at C-2 rather than on the benzene ring. An abundant species f $(m/e \ 116)$ is formed by elision of two carbon monoxide molecules from the molecular ion. As expected, the odd-electron species f decomposes by loss of a hydrogen radical to afford m/e 115, most plausibly represented as the benzocyclopentadienyl cation g formed by ring expansion (Scheme II).

In the spectrum of the 2,3-dimethyl compound (III), in addition to the loss of a methyl radical both from the M – CO ion (h, m/e 158) and directly from the molecular ion, to furnish m/e 143 and m/e 171, respectively, there is appreciable expulsion of a hydrogen

(2) In the plausible fragmentation sequences given for asymmetric quinones, the choice of CO group which is expelled is purely arbitrary.

radical from h to afford m/e 157. This last process obviously reflects the presence of two methyl groups in h from which a hydrogen radical may be lost to give an even-electron ion (e.g., i). Some of the decomposition processes, many of which are supported by the presence of metastable peaks, are summarized in Scheme III; exact mass measurements substantiate the composition of all these fragment ions. Once more the appearance of an abundant m/e 104 ion (b) and its characteristic decomposition products establishes the absence of 5-, 6-, 7-, or 8-substituents.

Scheme III

The spectra of naphthoquinones containing a C-2 or C-3 hydroxyl substituent (e.g., IV, VI, VII, and XIV) are noteworthy for a highly characteristic hydrogen rearrangement which results in a partial or almost total shift of the m/e 104 ion b, encountered in the spectra hitherto discussed, to m/e 105, corresponding to the benzoyl ion j. If the spectrum of 2-hydroxynaphthoquinone (lawsone, VI) is determined after introduction of a small quantity of deuterium oxide into the heated inlet system of the spectrometer,³ the molecular ion then occurs at m/e 176, corresponding to the predominant d_2 -species VIa. Evidently the C-3 hydrogen atom is activated towards replacement by deuterium through equilibration with the tautomeric trione. As may be anticipated, m/e 105 shifts to m/e106 in the spectrum of VIa, but this compound cannot be utilized to distinguish between hydrogen rearrangement from the C-2 hydroxyl group and rearrangement of the C-3 hydrogen, even though the former seems a priori more likely. However, in the spectrum of $O-d_1-2$ -hydroxy-3-methylnaphthoquinone ($O-d_1$ -phthiocol, IVa), obtained by introducing IV into the inlet system with deuterium oxide, the m/e 105 ion of IV is shifted almost quantitatively to m/e 106, establishing the hydroxyl group as the principal source of the rearranged hydrogen. We conclude therefore that the

(3) J. S. Shannon, Australian J. Chem., 15, 265 (1962).

benzoyl ion (j, m/e 105) may in general be formed by rearrangement of the hydroxyl hydrogen in the spectra of various 2-hydroxy- or 3-hydroxynaphthoquinones. A number of appropriate metastable ions indicate that the hydrogen rearrangement occurs in the M - COion; a plausible mechanism involving a six-membered cyclic transition state $(k \rightarrow l)$ is indicated for d_2 -lawsone (VIa) in Scheme IV. The structures proposed for j and I are strongly supported by their decomposition to the phenyl cation (m/e 77) and d_1 -phenyl cation (m, m/e 78), respectively. In other respects, the decomposition of lawsone (VI) is analogous to that of naphthoquinone (I), except for the formation of a $C_7H_5^+$ ion (m/e 89), which may be formulated as the benzocyclopropenyl cation (n) arising via the elimination of a formyl radical from the M - 2CO ion (o, m/e 118). Finally, before leaving our discussion of the rearrangement typified by $k \rightarrow l$, it should be noted that the increasing ratio of m/e 105 to m/e 104 on progressive substitution of C-2 and C-3 by a methyl group (see spectra of II and III in Table I) is evidence that an analogous but less preponderant rearrangement of a methyl hydrogen may operate in these cases.

^a The composition of all fragment ions which are considered have been established by exact mass measurements.

The isomeric compounds 2-hydroxy-3-methylnaphthoquinone (phthiocol, IV) and 2-methyl-5-hydroxynaphthoquinone (plumbagin, XII) may of course be readily differentiated by the presence of the abundant m/e 105 ion present only in the spectrum of the former. The far more abundant $M - CH_3$ ion (m/e 173) derived from XII relative to IV (22% and <1% of molecular ion base peak, respectively) also serves to differentiate these isomers, although the cause of this difference in behavior is not readily apparent. In general, the presence of a hydroxyl group in the benzenoid ring of XII, VIII, IX, XI, XIII, XIV, and XV is indicated by the presence of a prominent m/e 120 ion (p) in their spectra which breaks down to the hydroxybenzyne

Table I. Mass Spectra of Naphthoquinone (I) and Substituted Naphthoquinones (II-XXII)^a

Compd.																		
I	m/e	50	51	66	74	75	76	77	102	104	105	130	131	158 (M) 159			
II	I, % m/e I, %	23 39 15 172 (12 50 21 M)	51 8 173	12 63 7	14 74 13	40 75 15	6 76 48	39 77 12	46 104 60	105 16	40 115 41	6 116 40	100 129 6	11 144 54	145 6		
III	m e I, %	50 50 186 (51 6 M)	14 75 5 187	76 20	77 7	104 27	105 12	115 12	128 9	129 13	130 8	143 6	157 13	158 20	171 5		
IV	m/e I, %	100 50 11 161	51 8 188 (16 55 7 (M)	76 13 189	77 15	78 6	103 6	104 10	105 18	115 6	131 20	132 18	133 8	159 6	160 16		
IVa	m/e I, %	6 76 18 189	100 77 16 190	$78 \\ 14 \\ (d_0 =$	$23 \\ 103 \\ 6 \\ = 25, d_1$	$104 \\ 14 = 73,$	$105 \\ 18 \\ d_2 = 2$	106 21 2%)	131 8	132 28	133 21	134 6	160 9	161 15	188 34			
v	m/e I, %	100 50 10 131 11 202	15 51 7 132 13	52 6 143 8	74 6 144 30	75 8 145 10	76 24 158 13	77 20 159 11	90 7 160 35	103 9 161 6	104 13 172 21	105 13 186 8	115 29 199 13	116 14 200 21	128 6 201 (100	130 8 (M)		
Va ^b	m/e I, %	24 50 6 161	51 5 173	76 9 187	77 7 200	78 5 201	104 8 202 (105 10 M)	115 8 203	116 11	131 7	132 11	133 6	144 6	145 28	160 20		
VI	m/e I, %	6 50 18 146	15 51 8 174 (9 59 8 (M)	8 63 175	22 69 11	100 73 7	74 10	19 75 10	76 20	77 27	89 18	90 12	104 11	105 82	106 11	118 11	
VIa	m/e I, %	21 50 8 106	100 51 8 107	52 8 147	13 60 6 148	63 6 174	64 6 175	70 8 176	74 10 177	$75 \\ 8 \\ (d_0 =$	76 29 7, d1	$77 \\ 14 \\ = 38, 4$	78 22 $d_2 = 53$	90 8 5 %)	91 7	104 11	105 37	
VII VIII	m/e I, % m/e	80 76 21 37	13 77 13 38	12 104 16 39	17 105 12 45	12 145 24 50	62 173 30 51	100 180 41 53	13 181 11 54	182 19 59	208 (100 61	M) 62	209 21 63	210 40 64	211 10 65	74	75	77
	I, %	12 83 18 175	16 85 13 176	21 89 33	14 90 25	20 91 10	19 92 67	22 102 7	8 118 89	13 119 15	19 120 60	34 121 7	66 146 37	31 147 7	8 173 35	14 174 (100	10 M)	10
VIIIa	m/e I, %	30 62 14 148	11 63 25 173	64 18 174	65 7 175	89 8 176 27	90 9 177	91 8 178	92 26 179	$93 \\ 18 \\ (d_0 =$	118 32 52, d_1	$119 \\ 21 \\ = 28,$	$120 \\ 34 \\ d_2 = 1$	$121 \\ 28 \\ 10, d_3 = 1$	122 6 7; d₄	146 14 = 3%)	147 10	
IX	m/e	50	51	63	64	91 7	92	118	120	146	174 (M)	175	176				
х	I, % m/e I, %	50 12 162	51 31 189	13 53 12 190 (61 7 M)	62 12 191	63 13	24 69 36	50 77 11	78 10	79 7	105 9	108 34	134 52	135 6	136 44	161 6	
XI	m/e	92	105	100	120	121	122	134	162	188	190 (M)	191 29	192				
XII	I, % m/e I,	39 8 189	24 51 6	63 10	64 6	42 77 8	92 14	120 18	121 14	131 18	132 13	145 6	160 18	173 22	174 6	188 (100	M)	
XIII	m/e I, %	28 53 12 209	62 12 210	63 18 211	74 8	89 17	92 17	95 11	145 58	146 6	152 14	173 48	174 39	180 22	208 100	(M)		
XIV	m/e I, %	14 39 8 106	48 43 8 120	51 9 121	53 7 134	57 7 162	60 9 163	62 10 190 (63 14 M)	64 9 191 22	65 9	69 13	73 8	78 7	87 7	92 18	93 14	105 14
XIVa	m/e I, %	6 60 19 78 22 98 11 165 18	40 61 21 79 16 104 10 190 20	65 62 17 80 10 105 66 191 61	15 63 22 81 20 106 28 192 100	29 64 21 82 13 107 11 193 69	65 16 83 22 120 31 194 21	66 10 84 11 121 54 195 11	67 21 85 16 122 69 196 7	$ \begin{array}{c} 53 \\ 68 \\ 12 \\ 87 \\ 11 \\ 123 \\ 64 \\ (d_0 = \end{array} $	$ \begin{array}{r} 69 \\ 34 \\ 89 \\ 11 \\ 135 \\ 10 \\ = 7, d_1 \end{array} $	$70 \\ 18 \\ 91 \\ 21 \\ 136 \\ 14 \\ = 25,$	$71 27 92 18 137 11 d_2 = 3$	73 22 93 26 163 18 6, d₃ 23, d	$74 \\ 27 \\ 94 \\ 18 \\ 164 \\ 23 \\ d_4 = 5$	75 15 95 15 $d_5 = 3$	76 22 96 10 3%)	77 52 97 12

Table I (Continued)

Compd.																	_	
xv	mle	36	40	53	54	61	62	63	73	74	87	92	97	116	120	123	125	
21.	LZ	19	16	9	9	15	18	24	7	14	15	14	8	- 9	8	18	6	
	-, /0	179	180	181	207	208	209	242	(M)	243	244	245	246		-			
		45	10	15	100	13	34	100		15	60	9	10					
XVI	mle	108	134	136	189	190 ((M)	191										
	1. %	11	8	6	34	100	,	12										
XVII	m/e	39	44	50	51	62	63	74	75	76	77	89	91	102	103			
	1. %	9	6	9	6	12	16	9	19	38	7	7	8	37	9			
	, , ,	104	105	114	130	131	132	133	142	159	160	170	171					
		35	9	16	27	20	8	7	7	19	9	11	7					
		188 (M)		189	190													
		100 `		16	7													
XVIII	m/e	42	43	44	63	92	118	120	146	173	174	175	216 ((M)				
	I, %	12	14	18	6	7	12	10	7	15	100	13	6					
XIX	m/e	50	51	63	69	74	75	76	77	89	101	102	104	105	130	131		
	I, %	15	7	7	15	8	10	22	7	46	7	38	10	6	9	7		
		158	159	173	188 ((M)	189	190										
		36	20	39	100		15	7										
XX	m/e	41	42	50	51	52	53	54	55	56	57	63	67	68	69	74	75	76
	I, %	15	8	20	18	10	8	6	16	10	6	6	6	7	6	14	20	40
		77	78	79	80	82	83	84	85	89	101	102	103	104	105	115	128	
		16	14	8	6	7	10	34	6	12	19	44	9	36	15	10	6	
		129	130	131	146	156	157	158	1 59	172	184	185	186	198	200			
		11	16	8	8	6	8	28	6	11	14	12	13	10	6			
		212	224	236	239	240	241 (M)	242									
		16	6	8	17	26	100		21									
XXI	m/e	50	51	52	63	77	105	106	131	134	135	145	146	159	174			
	I, %	6	8	6	6	12	6	12	10	14	12	12	10	5	24			
		187	202 (M)	203													
		23	100		15													
XXIa	m/e	50	51	52	69	77	78	79	106	107	132	134	135	136	145	146		
	I, %	6	9	7	6	9	11	6	9	10	9	10	24	14	7	12		
		147	174	175	176	187	188	189	202	203	204	205	206					
		11	11	20	6	11	24	10	53	100	44	19	7					
		$(d_0 =$	$= 24, d_1$	= 48,	$d_2 =$	$17, d_3$	$= 8, d_4$	= 3%	5)									
XXII	m/e	50	51	76	77	104	105	115	128	133	141	152	165	180	183	194		
	I, %	6	6	12	11	8	17	6	6	6	5	9	9	8	8	7		
		195	197	208	211	212 (M)	213										
		9	32	11	14	100		17										

^a All ions having an abundance greater than 5% of that of the base peak (arbitrarily taken as 100%) are recorded. ^b This spectrum corresponds to the N- d_1 derivative; the spectrum of unlabeled material has been removed by subtraction.

ion radical (q, m/e 92, Scheme V). The latter fragment appears to decompose consistently by expulsion of a formyl radical to give the C₅H₃⁺ cation (m/e 63). Except for the formation of m/e 63, 5-hydroxynaphthoquinone (juglone, VIII) and 6-hydroxynaphthoquinone (IX) fragment analogously to naphthoquinone (I) itself.

Scheme V

HO
$$\xrightarrow{-CO}$$
 HO $\xrightarrow{-CHO}$ C₅H₃⁺
p, m/e 120 q, m/e 92 m/e 63

Of the isomeric dihydroxynaphthoquinones X, XI, XIV, and XVI, naphthazarin (XVI) is unusual, its spectrum exhibiting an abundant molecular ion and very little fragmentation (Table I); this behavior reflects the stabilization of the naphthazarin system by hydrogen bonding and resonance. However, the fragmentation which does occur is of the expected type leading to the dihydroxybenzyne ion r (m/e 108). The qualitatively similar, but quantitatively much more pronounced decomposition of 5,7-dihydroxynaphthoquinone (X) is illustrated in Figure 1. Comparison of this spectrum with that (Figure 2) of 2,5-dihydroxynaphthoquinone (XI) clearly illustrates the useful generalization that a "doublet" at M - 54 and M - 56

is characteristic of a 2,3-unsubstituted naphthoquinone;

in these cases, the nature and number of substituents on

the benzene ring can readily be inferred from the M -

82 peak (M - 2CO-HC \equiv CH) and its decomposition

products. It is noteworthy that although the M -

Figure 1. Mass spectrum of 5,7-dihydroxynaphthoquinone (X).

CO and M - 2CO peaks in the spectra of naphthoquinones containing phenolic hydroxyl groups could in principle arise in part *via* expulsion of a carbon monox-

Figure 2. Mass spectrum of 2,5-dihydroxynaphthoquinone (XI).

ide molecule from the phenolic ring,⁴ such processes do not appear important. For example, the m/e134 ion in the spectrum (Figure 2) of XI is preferably formulated as s, since it decomposes to t $(m/e \ 105)$ in a manner analogous to the fragmentation of its deoxy analog (see $o \rightarrow n$). The formulation of m/e105 as t rather than as the isobaric benzoyl ion j seems secure in the absence of an m/e 77 ion (phenyl cation) in the spectrum (Figure 2) of XI.

The spectra of the three chloronaphthoquinones (VII, XIII, and XV) are particularly amenable to analysis due to the characteristic abundances of the two chlorine isotopes (${}^{35}Cl:{}^{37}Cl \simeq 3:1$). In all cases loss of a chlorine radical from the molecular ion or the M -CO ion is pronounced (see Table I). Conversely a carbon monoxide molecule may be expelled from the molecular ion or the M - Cl species, but ions corresponding to M - 2CO - Cl are negligible in all three chloro compounds. M - 2CO species are not detectable except in the spectrum of 2-chloro-5-hydroxynaphthoquinone (XIII) in which this species constitutes 14% of the base peak [m/e 152 ion (see Table I) corresponding to ³⁵Cl isotope]. All these processes are confirmed by appropriate metastable ions.

5-Methoxynaphthoquinone (XVII) was prepared by methylation of the hydroxy compound (VIII) with methyl iodide and silver oxide. The product contained traces of a dihydrojuglone methyl ether (as evidenced by peaks at m/e 190 and m/e 175 in its mass spectrum) which could be removed by column chromatography under nitrogen in the dark and crystallization of the purest fraction from carbon tetrachloride. In the mass spectrum of XVII, the expulsion of a formyl radical from the molecular ion is observed to afford m/e 159, represented as the protonated naphthoquinone u (Scheme VI). Elimination of a second formyl radical furnishes m/e 130, the representation of which as a is consistent with its usual breakdown to m/e 104 (b), m/e 102 (c), and m/e 76 (d).

Scheme VI

The isomeric 2-methoxynaphthoquinone (XIX) behaves very differently. The spectrum contains abundant M - CH₃ (m/e 173) and M - CH₂O (m/e 158) ions. The latter decomposition occurs in part with formation of the naphthoquinone moleular ion as evidenced by the characteristic $a \rightarrow b \rightarrow d$ and $a \rightarrow c \rightarrow d$ sequences which are apparent in the spectrum of XIX and supported by appropriate metastable ions. Thus in the methyl ethers XVII and XIX, the initial fragmentation involves the methoxyl groups and the naphthoquinone skeleton is only broken subsequently. An additional noteworthy feature of the spectrum of XIX is the presence of an m/e 69 ion (C₃HO₂⁺), which appears in the spectra of all the naphthoquinones (VI, X, XI, XIV, and XIX) containing the (O-C-C-C-O) unit. A plausible structure for this fragment is $O = C = CH - C \equiv O^+$.

The spectra of the aminonaphthoquinones which have been examined show some interesting features. The relatively abundant M - 5 species (6% of base peak) in the spectrum of 2-piperidinonaphthoquinone (XX) corresponds to the pyridinium ion v; similar behavior is exhibited by a number of simpler pyrrolidine and piperidine enamines.⁵ The M - 29 (m/e 212) and M - 43 (m/e 198) fragments are associated with the well-studied breakdown⁶ of the piperidine ring system upon electron impact. Elimination of the C-2 substituent occurs with concomitant hydrogen rearrangement to the quinone ring and the naphthoquinone molecular ion so formed breaks down as usual. The m/e 84 ion is due to the immonium ion w. Interpretation of the spectrum of 2-methyl-3-methylaminonaphthoquinone (V) has been aided by the spectrum of the N- d_1 derivative Va. The M - CHO ion (m/e 172), whose composition has been determined by high resolution measurements, retains deuterium in the spectrum of Va and therefore the hydrogen atom lost in this process is almost certainly one of those from the methyl groups. The M – C_2H_3N ion (m/e 160) in the spectrum of V does not retain the deuterium atom in the spectrum of Va. The cleavage must involve therefore a hydrogen transfer from the N-methyl group to the ring system, but the process must be rather complex.

⁽⁴⁾ Cf. behavior of simple phenols: H. Budzikiewicz, C. Djerassi, and D. H. Williams, "Interpretation of Mass Spectra of Organic Compounds," Holden-Day Inc., San Francisco, Calif., 1964, pp. 167, 168.

⁽⁵⁾ J. T. B. Marshall and D. H. Williams, unpublished work.
(6) A. M. Duffield, H. Budzikiewicz, D. H. Williams, and C. Djerassi, J. Am. Chem. Soc., 87, 810 (1965).

The one acetate examined, 5-hydroxynaphthoquinone acetate (XVIII) behaves unexceptionally, exhibiting the anticipated loss of ketene (M - 42) in its spectrum, subsequent cleavages being identical with those observed for 5-hydroxynaphthoquinone (juglone, VIII). The most interesting feature of the tetrahydroanthraquinone (XXII) spectrum is the appearance of an m/e 165 ion, corresponding to x which must be formed by extensive rearrangement.

In summary, mass spectrometry is of considerable utility in locating a naphthoquinone substituent in the benzenoid or quinonoid ring. Moreover, the O-C= CH-C-O unit is indicated by the presence of an appreciable $C_3HO_2^+$ ion (*m/e* 69); quinonoid hydroxyl groups lead to highly characteristic rearrangement ions. Therefore, this method, applied in conjunction with nuclear magnetic resonance, infrared, and ultraviolet spectroscopic techniques, should greatly assist structure elucidation in this class of compounds.

Experimental Section

All spectra were determined using an A.E.I. MS 9 mass spectrometer operating at 70 e.v. With the exception of 5,7-dihydroxynaphthoquinone (X) and 5,8-dihydroxynaphthoquinone (XVI), samples were introduced through a heated inlet system at a temperature of approximately 200°. The direct insertion technique was employed to obtain the spectra of X and XVI.

Acknowledgments. We wish to thank Professor **R**. H. Thomson for a sample of 5,7-dihydroxynaphthoquinone (X) and Dr. G. M. Blackburn for a sample of 2,7-dimethyl-5-hydroxynaphthoquinone (XXI). Our sincere thanks are expressed to Mr. Eric Liddell for skillful assistance in obtaining some of the spectra.

The Mass Spectra of Methyl-Substituted Cyclopentadienes

A. G. Harrison,¹ P. Haynes,² Stewart McLean, and F. Meyer

Contribution from the Department of Chemistry, University of Toronto, Toronto 5, Ontario, Canada. Received April 17, 1965

The mass spectra of a series of methyl-substituted cyclopentadienes have been obtained and the major fragmentation paths upon electron impact elucidated. The spectra of the cyclopentadienes are shown to be very similar to the spectra of isomeric cyclohexadienes. From comparison of spectra and from appearance potential data, it is concluded that the major fragment ions from the methylcyclopentadienes do not retain the cyclopentadienyl structure but undergo rearrangement, probably to form a cyclic benzenium-type ion.

Introduction

As part of a study of the chemistry of cyclopentadiene. a series of methyl-substituted cyclopentadienes has been prepared recently in this laboratory.³ As an aid to identification, the mass spectra were determined, and it was observed that the spectra showed practically no features attributable to positional isomerism involving the methyl groups. A similar lack of positional isomerism effects is observed in the mass spectra of alkylsubstituted benzenes and has been explained⁴ by postulating that the major fragment ions are tropylium or

substituted tropylium ions in which differences of arrangement of substituents do not have an important effect. Experimental evidence for the formation of a tropylium structure has been presented for toluene and related isomers,⁵ C₈H₁₀ alkylbenzenes,^{6,7} and higher alkylbenzenes.8 On the other hand it has been suggested⁹ that the major fragment ions from benzene itself are acyclic.

The lack of positional effects in the spectra of the methylcyclopentadienes coupled with the observation¹⁰ that the effect of methyl substitution on the ionization potential of cyclopentadiene is similar to that observed in the benzene series suggested that rearrangements might be occurring in the fragmentation of the methylcyclopentadienes similar to those observed for the alkylbenzenes. This has led us to undertake a detailed investigation of the mass spectra of the methylcyclopentadienes and a comparison, where possible, of the spectra of the methylcyclopentadienes with the spectra of cyclic and acyclic isomers. The mass spectral data have been supplemented by appearance potential data for the major fragment ions.

(10) F. Meyer and A. G. Harrison, Can. J. Chem., 42, 2256 (1964).

⁽¹⁾ Alfred P. Sloan Fellow, 1962-1964.

⁽²⁾ Holder of National Research Council (Canada) Studentship, 1963-1964.

⁽³⁾ S. McLean and P. Haynes, Tetrahedron, 21, 2313, 2343 (1965).

⁽⁴⁾ H. M. Grubb and S. Meyerson in "Mass Spectrometry of Organic Ions," F. W. McLafferty, Ed., Academic Press Inc., New York, N. Y., 1963, Chapter 10.

^{(5) (}a) S. Meyerson and P. N. Rylander, J. Chem. Phys., 27, 901 (1957); (b) Z. Dolejsek, V. Hanus, and H. Prinzbach, Angew. Chem., 34, 902 (1962); (c) C. Lifshitz and S. H. Bauer, J. Phys. Chem., 67, 1629 (1963); (d) S. Meyerson, J. Am. Chem. Soc., 85, 3340 (1963).
(6) J. M. S. Tait, T. W. Shannon, and A. G. Harrison, *ibid.*, 84, 4 (1962)

^{(1962).}

⁽⁷⁾ F. Meyer, P. Haynes, S. McLean, and A. G. Harrison, Can. J. Chem., 43, 211 (1965).

⁽⁸⁾ F. Meyer and A. G. Harrison, J. Am. Chem. Soc., 86, 4757 (1964). (9) J. Momigny, L. Brakier, and L. D'Or, Bull. Classe Sci. Acad. Roy. Belg., 48, 1002 (1962).